

#### **2023 JOINT REGULATORY PLAN REVIEW**

#### STAKEHOLDER MEETING EXECUTIVE SUMMARY



NAME OF MEETING: DATE: LOCATION: Stakeholder Meeting 6 September 8, 2022 Virtual and HGSD Office

On Thursday, September 8, 2022 at 10:00 am, the Harris-Galveston and Fort Bend Subsidence Districts (the Districts) held their sixth Joint Regulatory Plan Review Stakeholder Meeting. This meeting was held as a virtual meeting and also offered in person at the Harris-Galveston Subsidence District office. Numerous board members, elected officials, regional water authorities, and representatives from local, State and Federal agencies joined the meeting, with more than 60 panelists and attendees participating. A full list of meeting participants is included in **Attachment A**.

The purpose of this meeting was to provide project element updates from the Joint Regulatory Plan Review. Ms. Ashley Greuter, Director of Research and Water Conservation for the Districts, welcomed the stakeholders to the Districts' sixth stakeholder meeting and introduced the Joint Regulatory Plan Review project team and collaborators, including Mr. Jason Afinowicz of Freese and Nichols and Dr. Steven Craig, Professor of Economics at the University of Houston, who attended as panelists.

They provided a presentation of the following topics:

- Population Projections Methodology and Distribution
- Project Status Update

The formal presentation concluded with a review of the overall project schedule and upcoming milestones. A copy of the meeting presentation is provided in **Attachment B.** 

A question and answer session was held after the presentation. A summary of the questions and responses is provided in **Attachment C.** 

#### ATTACHMENT A – MEETING ATTENDANCE

| FIRST    | LAST         | AFFILIATION                                       |  |  |
|----------|--------------|---------------------------------------------------|--|--|
| Jason    | Afinowicz    | Freese and Nichols                                |  |  |
| Wayne    | Ahrens       | DE Corporation                                    |  |  |
| Rosa     | Alvarez      | HGSD Board Member                                 |  |  |
| Natalie  | Ballew       | Texas Water Development Board                     |  |  |
| Amber    | Batson       | Carollo Engineers                                 |  |  |
| James    | Beach        | Advanced Groundwater Solutions, LLC               |  |  |
| Krystal  | Boggs        | North Harris County Regional Water Authority      |  |  |
| Rick     | Brezik       | City of League City                               |  |  |
| Brian    | Butscher     | City of Sugar Land                                |  |  |
| Jun      | Chang        | North Harris County Regional Water Authority      |  |  |
| Jack     | Christiansen | University of Houston                             |  |  |
| Katie    | Clayton      | City of Sugar Land                                |  |  |
| Courtney | Corso        | Freese and Nichols                                |  |  |
| Janet    | Corte        |                                                   |  |  |
| Steven   | Craig        | University of Houston                             |  |  |
| Katie    | Dahlberg     | Texas Water Development Board                     |  |  |
| Chris    | Drabek       | Advanced Groundwater Solutions, LLC               |  |  |
| John     | Ellis        | United States Geological Survey                   |  |  |
| Mark     | Evans        | North Harris County Regional Water Authority      |  |  |
| Julia    | Frankovich   | BGE, Inc.                                         |  |  |
| Matthew  | Froehlich    | BGE, Inc.                                         |  |  |
| Mark     | Gehringer    | FBSD Board Member                                 |  |  |
| Ashley   | Greuter      | Harris-Galveston Subsidence District              |  |  |
| Linda    | Harnist      | FBSD Board Member                                 |  |  |
| Kirstin  | Hein         |                                                   |  |  |
| Zach     | Holland      | Bluebonnet Groundwater Conservation District      |  |  |
| Casey    | Hughes       | Harris-Galveston Subsidence District              |  |  |
| Charles  | Jessup       | City of Meadows Place                             |  |  |
| Don      | Johnson      | HGSD Board Member                                 |  |  |
| Charles  | Kalkomey     | City of Rosenberg                                 |  |  |
| Manoj    | КС           | Michael Baker International                       |  |  |
| Mike     | Keester      | R.W. Harden and Associates, Inc.                  |  |  |
| Wendi    | Lacki        |                                                   |  |  |
| Christa  | Lopez        | Trinity River Authority                           |  |  |
| John     | Lynk         |                                                   |  |  |
| John     | Martin       | Southeast Texas Groundwater Conservation District |  |  |

Stakeholder Meeting 6 September 8, 2022 Page 3 of 6

| FIRST      | LAST         | AFFILIATION                                 |  |  |
|------------|--------------|---------------------------------------------|--|--|
| Michael    | Martorell    | City of League City                         |  |  |
| Carol      | McCutcheon   | City of Sugar Land                          |  |  |
| Temple     | McKinnon     | Texas Water Development Board               |  |  |
| Tom        | Michel       | San Jacinto River Authority                 |  |  |
| Christina  | Miller       | ABHR, LLP                                   |  |  |
| Douglas    | Miller       | HMW SUD                                     |  |  |
| Paul       | Morgan       |                                             |  |  |
| Keir       | Murray       | KLM                                         |  |  |
| Paul       | Nelson       |                                             |  |  |
| Merritt    | Nolte-Roth   | City of Sugar Land                          |  |  |
| Laura      | Norton       | Montgomery County MUD Director              |  |  |
| Veronica   | Osegueda     | Harris-Galveston Subsidence District        |  |  |
| Thomas     | Poulose      | Michael Baker International                 |  |  |
| Mark       | Ramsey       |                                             |  |  |
| Michael    | Reedy        | Freese and Nichols                          |  |  |
| Stacey     | Reese        | Stacey Reese Law, PLLC                      |  |  |
| Samantha   | Reiter       | Lone Star Groundwater Conservation District |  |  |
| Melissa    | Rowell       |                                             |  |  |
| C. Michael | Scherer      | FBSD Board Member                           |  |  |
| Shelley    | Sekula-Gibbs |                                             |  |  |
| MA         | Shepherd     |                                             |  |  |
| Allison    | Swann-Davis  | Harris-Galveston Subsidence District        |  |  |
| Philip     | Taucer       | Freese and Nichols                          |  |  |
| Janice     | Thigpen      | Lone Star Groundwater Conservation District |  |  |
| Robert     | Thompson     | Fort Bend Subsidence District               |  |  |
| Satish     | Tripathi     | City of Houston                             |  |  |
| Mike       | Turco        | Harris-Galveston Subsidence District        |  |  |
| Robert     | Valenzuela   | City of Sugar Land                          |  |  |
| Gene       | Walton       | FBSD Board Member                           |  |  |
| вт         | Williams     | FBSD Board Member                           |  |  |
| Gregory    | Wine         | FBSD Board Member                           |  |  |
| Joe        | Zimmerman    | City of Sugar Land                          |  |  |

Stakeholder Meeting 6 September 8, 2022 Page 4 of 6

ATTACHMENT B – MEETING PRESENTATION



Thank you for joining us today for the Joint Regulatory Plan Review Stakeholder Meeting

All participants have been joined in "listen only" mode.

For meeting audio, you can use your microphone and speakers (VoIP) or call in using your telephone at **877-309-2074.** Access code: **808-265-564** 

If you are having technical difficulty, please send a message to staff in the chat or email <u>HgGoToMeetings@subsidence.org</u>

HARRIS-GALVESTON

#### BEFORE WE BEGIN



This webinar is scheduled for two hours. We have left time for questions.



All participants will be muted during the presentation.



Questions can be submitted via the Go To Webinar "Questions" screen at any time.



This webinar is being recorded.



We will post slides on our website after the meeting today.







# 2023 JOINT REGULATORY Plan Review

#### **Stakeholder Meeting 6**

September 8, 2022

## Keys Stakeholder Engagement Opportunities









 $\bigcirc$ 

Providing data for technical analyses Providing feedback on draft material Participating in targeted outreach efforts

4

#### **Develop Population and Demand Projections**

Develop projections of population and water demand over a ten-county area through the year 2100.

#### Conduct Alternative Water Supply Assessment

Review alternative water supplies for the capability of reducing future groundwater demand.

#### Evaluate Regulatory Scenarios

Evaluate the performance of the HGSD and FBSD regulatory plans and consider refinements to the regulatory plan framework to accommodate future growth, alternative water supplies, and the most recent aquifer science.



#### Develop the Gulf Coast Land Subsidence and Groundwater Flow Model

Development of the GULF-2023 model for simulating regional groundwater flow and subsidence in the Gulf Coast Aquifer.

### TODAY'S SPEAKERS



# Jason AfinowiczFreese and Nichols



Dr. Steven CraigUniversity of Houston

# Project Elements

Population Projections



Small Area Model Houston (SAM-Houston) Long-range, wide-area projections Projected Development Methodology Short-range, detailed projections

8

metrostudy

#### TRENDS



Petroleum industry is an essential part of Houston's economy

Illustrated by COVID slowdown and economic distress

US oil prices would have increased without fracking \$125/bbl in 2020 forecasted in 2000

Houston significantly benefitted from technological change

May not occur again soon

#### Oil forecasts not available past 2050

#### Lack of clear direction



#### $\mathcal{O}$

### POPULATION PROJECTIONS

70% of Petroleum production is used in transportation

Petroleum demand will be reduced globally which may impact:

- Oil exploration
- Houston's high-tech geology and related employment
- Transportation of hydrocarbon products (e.g., pipelines)



# Developing Long-Term Trends

**Urban Case Studies** 

1 St. Louis 2 Birmingham 3 Pittsburgh 4 Cleveland

Center city growth slows when main industries begin to decline Suburban growth continues

Slow reaction in public sector to economic change

Reduction in average firm size

At a more modest pace

# **Other Trends**







**Comparison to Previous Projections** 



\*2021 RWP and 2016 RWP used projections developed in 2013 RGUP for Brazoria, Harris, Galveston, Montgomery, and Fort Bend Counties, with only slight modifications (<0.01%).

#### **COMPARISON TO PREVIOUS PROJECTIONS**



#### **COMPARISON TO PREVIOUS PROJECTIONS**



#### **COMPARISON TO PREVIOUS PROJECTIONS**



# Projections at Varying Spatial Scales

### Census Tracts

### Census Blocks



#### Percent change in population by census tract

|            | <u>2020</u> | <u>2030</u>      | <u>% Change</u> |
|------------|-------------|------------------|-----------------|
| Austin     | 30,167      | 31,300           | +4%             |
| Brazoria   | 372,031     | 403 <i>,</i> 497 | +8%             |
| Chambers   | 46,571      | 60,631           | +30%            |
| Fort Bend  | 822,779     | 1,025,010        | +25%            |
| Galveston  | 350,682     | 377,403          | +8%             |
| Harris     | 4,731,145   | 5,193,657        | +10%            |
| Liberty    | 91,628      | 115,074          | +26%            |
| Montgomery | 620,443     | 759,919          | +22%            |
| Waller     | 56,794      | 71,599           | +26%            |
| Wharton    | 41,570      | 41,827           | +1%             |



#### Percent change in population by census tract

|            | <u>2020</u> | <u>2050</u> | <u>% Change</u> |
|------------|-------------|-------------|-----------------|
| Austin     | 30,167      | 33,366      | +11%            |
| Brazoria   | 372,031     | 451,031     | +21%            |
| Chambers   | 46,571      | 102,555     | +120%           |
| Fort Bend  | 822,779     | 1,431,122   | +74%            |
| Galveston  | 350,682     | 401,517     | +14%            |
| Harris     | 4,731,145   | 5,547,593   | +17%            |
| Liberty    | 91,628      | 176,682     | +93%            |
| Montgomery | 620,443     | 1,063,722   | +71%            |
| Waller     | 56,794      | 101,637     | +79%            |
| Wharton    | 41,570      | 42,335      | +2%             |



Magnitude of growth in population



Magnitude of growth in population



# DISTRIBUTION TO CENSUS BLOCKS

Within tracts, growth is distributed based on:

- Near-term development (2020-2030, Metrostudy)
- Interstate and highway proximity
- Wetlands
- Floodplains
- Existing and recent development

High priority for growth

No growth

### DISTRIBUTION TO CENSUS BLOCKS

Distribution after 2030:

- Less certainty about precise development locations
- Interstate and highway proximity expansion of major corridors
- Wetlands
- Floodplains potential changes

26

High priority for growth

No growth

Percent change by block group



2023 JRPR Web Map with ArcGIS Web AppBuilder

#### STAKEHOLDER ENGAGEMENT

5



# Schedule and Next Steps

|  |        | GULF 2023<br>Model         | Projected<br>Water Needs                            | Alternative<br>Water<br>Supplies               | PRESS<br>Assessment       | Water Use<br>Scenarios                     |
|--|--------|----------------------------|-----------------------------------------------------|------------------------------------------------|---------------------------|--------------------------------------------|
|  | 2020   | Model Conceptual<br>Report | Methodology,<br>Model Updates                       | Overview of<br>Alternatives                    | PRESS Model<br>Validation |                                            |
|  | 2021   | Complete Model<br>Update   | Population and<br>Demand<br>Projections             | Technical<br>Characterization,<br>Final Report |                           |                                            |
|  | STATUS | Complete Model<br>Update   | Direct Stakeholder<br>Process, Final<br>Projections |                                                |                           | Scenario<br>Development                    |
|  | 2023   |                            |                                                     |                                                | Scenario Testing          | Scenario Testing,<br>Recommendations<br>30 |



### UPCOMING MILESTONES

#### Q3 2022

Population projections stakeholder outreach

#### Q4 2022

Baseline Scenario development and execution



#### Q1 2023

**Baseline Scenario evaluation** 



# QUESTIONS AND ANSWERS





# We appreciate your interest and engagement in this meeting.

#### ATTACHMENT C – Question and Answer Session

The following summary documents questions that were received during the stakeholder meeting as well as formal responses provided for the record.

#### QUESTIONS WITH RESPONSES

- How many variables are in the population projection? The projections are influenced by the conceptual model behind the Small Area Model (SAM)-Houston, numerous underlying assumptions based on study of the region and other case studies, and various input datasets. Input datasets and variables include:
  - a. Census population counts by Census tract and block from 1970 to 2020;
  - b. Employment estimates from the Census based on the location of employment, not the residence of the employed;
  - c. Growth rates of employment in the energy sector, manufacturing, wholesale trade, and overall;
  - d. Spatial data for the study region;
  - e. Land use data from the county Appraisal Districts for the primary counties in the study region;
  - f. Model generated locations of employment subcenters in the region;
  - g. Estimated spatial relationships between population density and employment density; and
  - h. Estimated employment relationships among counties.
- 2. What is the probability of this single projection you are using, i.e., P50, P10, P90? As the overall model includes a combination of statistically-distributed and non-probabilistic elements, there is no way to determine an overall probability for the comprehensive model. It is certain, however, that the actual outcomes will be different than the exact numbers in the model output. The intent of the overall projection methodology is to provide the "most likely" scenario resulting from the included variables and estimated relationships.
- 3. What are the most sensitive variables, i.e., what are the top factors that influence results? All US cities are decentralizing, meaning suburban areas are growing faster than more central areas. The rate of decentralization is therefore primary. Further, the density by which vacant land is developed is a central determinant of the population capacity of each Census tract.

#### 4. What economic factors are included? GPD? Interest Rates? CPI, etc.?

County level employment in the energy and manufacturing industries plus wholesale trade is the single most important driver of the overall county population model. All of the spatial relationships between employment and places of residence are the result of the economic models.

#### 5. What is the probability of this single projection in the model? P50 or other?

Our forecasts report the projected number of people in each Census tract for each decade out to the year 2100. Since the forecasts describe a distinct value for each tract and decade, the exact formal probability that the precise value will be realized is zero. While the true future population of each tract may be above or below the predicted value, the economic concepts underlying the SAM-Houston model have proven to be more useful for forecasting the level and location of population growth in our area than available alternatives.

The model assumes that population location in the Houston area is driven by employment. This view not only drives our overall population forecasts, but the distribution of forecasted change throughout the metro area. Our model's employment driven forecasts have out-performed other forecasts, including from the Census Bureau, because we do not differentiate the source of population between migration and native born.

Past results of the SAM-Houston methodology have been close to realized population. If the economic environment important to Houston changes in a major way, we would expect our forecasts to decline in utility. The forecasts beyond 2050 have greater uncertainty than those from 2020 to 2050.

The statistical processes, which have been developed in the SAM-Houston model, have been successful for more than two decades at describing the changes experienced by Houston. We believe the changes that we model after 2050 are useful to engage policymakers to consider how our local economy may change when more fundamental disruptions beset the Houston economy. Over-building infrastructure is as economically disruptive as under-building. Whether the changes occur in the time-frame assumed here, the distribution of population is likely to be captured by our modeling structure.

Finally, for perspective, consider only the economic events that have occurred over the last two decades that were not forecasted. The great recession, which started in 2008, was not forecasted in the year 2000, nor did people forecast the spate of strong storms that have hit our region in the last two decades, from Allison to Harvey. No one forecasted the pandemic and ensuing economic disruptions, just as no one locally forecasted the invasion of Ukraine by Russia and the resulting disruption to energy markets. In spite of these pivotal events, our forecasts made in 2010 for 2020 were very close to realized, thus suggesting that the modelling strategy and its application have been helpful.